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TRANSIENT THERMAL LENS FORMED BY SHORT LASER PULSE 

IN CONDENSED MEDIUM 
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The problem of relaxation is solved for a thermal lens which has been formed by a 
short laser pulse in a condensed medium. An expression is obtained for the focal 
length of such a lens and the asymptotic trend of the focal length as time increases 
is determined. 

Recent years have witnessed a growing interest in quasioptical structures developing in 
nonuniformly heated media. Gradients of thermodynamic parameters caused space--time modula- 
tion of the refractive index~ which alters the optical properties of the medium. It has 
demonstrated in earlier studies [i, 2] that formation and relaxation of a thermal phase dif- 
fraction grating can be successfully used in transient holography as well as for contactless 
measurements of thermophysical properties of materials. There are also known gaseous lenses 
used as phase correctors for light guides. 

In this communication the results of a study pertaining to a thermal lens formed during 
passage of a short strong laser pulse through a thin layer of a substance will be presented, 
whereupon a relation will be established between thermophysical properties of that substance, 
the space--time variation of the refractive index, and the optical properties of the lens. 
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Fig. I. Schematic diagram of thermal lens: 
dent light beam; 2) vessel walls; 3) fluid. 

Fig. 2. Schematic representation of the process: I) 
absorption stage; II) vibration damping stage; III) 
thermal relaxation stage. 

i) inci- 

Let us briefly describe the physical situation. On a thin layer of a substance in the 
from of a cylinder whose height is much smaller than its radius impinges a short but strong 
light pulse, the axis of the light beam coinciding with the axis of symmetry of the cylinder 
(Fig. i). Absorption of luminous energy by the substance causes its temperature to change, 
which results in space--time variations of its refractive index. Dissipation processes sub- 
sequently cause these variations to relax. We will evaluate the changes due to these proces- 
ses under the following conditions: i) the vessel with fluid (dimensions d = i00 ~m and ro = 
1 mm so that d <<ro) is thermally insulated; 2) reflection losses at the glass walls of this 
vessel do not exceed 10%, such an estimate being also valid for a layer of solid substance 
in air; 3) the medium absorbs some incident luminous energy (approximately 1%); 4) the power 
of incident radiation is approximately i0 MW and the duration of a pulse is mp = i0 nsec. 

The entire process, absorption of radiation and relaxation of thermal nonuniformity, 
can be tentatively subdivided into three stages (Fig. 2). In the first stage the temperature 
of the medium rises fast, as a result of absorption. In the second stage a local pressure 
jump excites thermomechanical vibrations which, not surprisingly, are dampled out fast by the 
viscosity of the medium. In the third stage the temperature relaxes, rather slowly, as a re- 
sult of heat conduction. 

In the aforementioned configuration with the given values of parameters, the energy ab- 
sorbed by the layer is on the order of 10 -3 J and the maximum temperature rise is on the order 
of I~ (assuming the substance has a density O = 103 kg/m 3 and a specific heat c v = 4 k J/ 
kg.K). We will therefore hypothesize that after lengths of time comparable with the duration 
of pulse action all processes can be ignored, except temperature changes (consequently also 
isochoric pressure rise) and absorption of laser radiation. It will also be assumed that the 
thermal conductivity of the vessel glass is much lower than that of the medium inside. As 
scales of length and time we select ro and to = ro/co, respectively. All quantities in this 
study will be treated in dimensionless form. 

On the aforementioned layers of a substance with parameters To, Po, Po let there impinge 
a light pulse whose space--time structure can be described by a known function l(r, T) and 
whose intensity does not increase from the center to the periphery. The first stage of the 
process is described by the equation 

O0/O'c = aI  (r, "0, P = Po, (I) 

v = O, P = Po 4- r215 z. 

The resulting temperature field, established by absorption of radiation, is 

TN 

O(r, ~v) = o~.!" l(r, ~)d~ = ~7(r). (2) 
0 

The temperature field 0(r, 0) - 0(r, Tp) and the pressure field after passage of the 
pulse will be regarded as the initial ones for the second stage, during which a pressure 
gradient will cause the medium to move. The maximum pressure rise at the beginning of the 
second stage reaches i atm ~v~2 "10 -4 I( -I and ;<r~g "10-~ atm -~ for water) so that the maximum 
velocity can be estimated at 10 -I cm/sec, the mass flux contributing much more than the ther- 
mal flux and thus not a negligible one (rather the opposite is true), but this motion of the 
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medium soon decays because of the viscosity (in water the pressure relaxation time is two 
orders of magnitude shorter than the temperature relaxation time). The mechanical effects 
will be examined in a separate study. Here we will only assume that they do not noticeably 
influence the temperature evolution. In other words, the second stage will be regarded as a 
short one and the temperature field (2) will be regarded as the initial one also for the third 
stage. During that third period we will disregard all processes except heat conduction. 

This situation corresponds to the problem of cooldown of an infinite cylinder according 
to the equation 

(I/r) O/Or (rOe~or) = Z-t0O/0~ (3) 

with initial and boundary conditions 

e(r ,  g) l~=o=e(r ,  0); O(r, ~)lr=l = 0 ;  e(r ,  T)lr= o<:co. (4) 

The solution to Eq. (3) for conditions (4) is [4] 

where 

O (r, x) = ~ AmJo (pmr) exp ( - -  p,~Z~), 
m = l  

' / 1 ,~tm)] +. �9 A~ = ~ re (r, o) Jo(~.~r) dr ~ -  [S~ ~ ~ 
0 

(5) 

(6) 

We will describe the thus formed inhomogeneity with the Lorentz--Lorentz equation [5] 

(n 2 - -  1)/(n z + 2) = 4a~/3v. (7) 

We will assume that the change in volume in this problem is caused solely by a change in tem- 
perature, i.e., 

v(0)  = v(1 + %0).  (8 )  

Then 

(n z - 1 ) / ( n  z + 2 ) = B [ l  + a v e ( r ,  x)l-a; B - - - - - -  

,) 

t z ~ -  1 
n o + 2  

(9) 

and this yields 

n (r, z) = [ 1 + 2B + av0 (r, ~)]1/2 [ 1 - -  B + av0 (r, -~)1-'/5. (10) 

The expression for the eikonal of the given system is 
d 

~ ( r ,  ~ ) =  t'n(r, ~)dz=dn(r, T). ( n )  

The coefficient of r a in the expansion of the eikonal into a power series in r ~ is known 
[5] to be equal to the lens power (reciprocal of the focal length). On the basis of relation 
(II), (i0), and (5) we obtain for the lens power the expression 

dar OO(0, "c) { [ 1 - - B + a v O ( 0 ,  x)] '12--[1 + 2 B + a v O ( 0 ,  T)] t/z} 
c~ (~) = [~ (~)1-~ = o (r~) (12)  

~ ~ 2 [ 1 - -  B -r- =v0 (0, %]~ ~ [ 1 + 2B q-- av 0 (0, x)] 1/'' 

Here 

(13) O(0, ~) = ~ Amexp (--F~ Zx), 

oo (0, ~)/o (r~) = - ~ A.~ exp (-F~ ~+) (14) 
m:l 

(we have expanded the Bessel function into a series in r2). 

The obtained expression relates the focal length of a diverging lens to the thermody- 
namic parameters of the system and to time. It follows from this relation that, for instance, 
the focal length of such a lens increases boundlessly with time, which is consistent with 
the physical nature of the given problem. 
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In conclusion, let us derive the asymptotic expression for the focal .length at time 
r ~ =. Because roots ~m with higher index numbers m are larger, one needs to retain only 
the first terms in series (13) and (14). Moreover, ~vO(r,z)<<l+2B, I--B 

Llnearization of relation (i0) with respect to aV8 yields 

3B=vd~t~ (15) 

[/(~)]-l~. 2( I__  B)3/s (I q_ 2B),/., " exp(--p~X~), 
so that the quantity 

3Bavd~  .~ l.t~yr (16) 
lnlf(T)l=--ln 2(1--B)~/2(l+2B) l/~ ' 

is a linear function of time. 

NOTATION 

Po, initial density; To, initial temperature; Po, initial pressure; no, initial refrac- 
tive index; ro, radius of a specimen; d, thickness of a specimen; Co, acoustic velocity at 
To, Po; X, dimensionless thermal diffusivity; 0 = (T--To)/To, dimensionless temperature; Jo and 
J,, Bessel functions; ~m, roots of the Bessel function Jo; To = ro/co, characteristic time; 
T, dimensionless time; r, dimensionless space coordinate; aV, coefficient of thermal expan- 
sion; v, molecular volume; @, eikonal; ca, lens power; f, focal length; Tp, pulse duration; 
a, absorption coefficient for light; and B, polarizability of one molecule. 
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